A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus.

نویسندگان

  • N Ruth Zearfoss
  • Juan Marcos Alarcon
  • Pierre Trifilieff
  • Eric Kandel
  • Joel D Richter
چکیده

Cytoplasmic polyadenylation element binding protein 1 (CPEB-1) resides at postsynaptic sites in hippocampal neurons in which it controls polyadenylation-induced translation. CPEB-1 knock-out (KO) mice display defects in some forms of synaptic plasticity and hippocampal-dependent memories. To identify CPEB-1-regulated mRNAs, we used proteomics to compare polypeptides in wild-type (WT) and CPEB-1 KO hippocampus. Growth hormone (GH) was reduced in the KO hippocampus, as were the GH signaling molecules phospho-JAK2 and phospho-STAT3. GH mRNA and pre-mRNA were reduced in the KO hippocampus, suggesting that CPEB-1 controls GH transcription. The transcription factor c-Jun, which binds the GH promoter, was also reduced in the KO hippocampus, as was its ability to coimmunoprecipitate chromatin containing the GH promoter. CPEB-1 binds c-Jun 3' untranslated region CPEs in vitro and coimmunoprecipitates c-Jun RNA in vivo. GH induces long-term potentiation (LTP) when applied to hippocampal slices from WT and CPEB-1 KO mice, but the magnitude of LTP induced by GH in KO mice is reduced. Pretreatment with GH did not reverse the LTP deficit observed in KO mice after theta-burst stimulation (TBS). Cordycepin, an inhibitor of polyadenylation, disrupted LTP induced by either GH application or TBS. Finally, GH application to hippocampal slices induced JAK2 phosphorylation in WT but not KO animals. These results indicate that CPEB-1 control of c-Jun mRNA translation regulates GH gene expression and resulting downstream signaling events (e.g., synaptic plasticity) in the mouse hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin

Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats. Materials and Methods: The ...

متن کامل

Effects of amitriptyline and fluoxetine on synaptic plasticity and TNF-α level at hippocampus of streptozotocin-induced diabetic rats

Introduction: Studies have indicated that diabetes mellitus impairs hippocampus. Diabetes increases the risk of depression and treatment with antidepressants may affect learning and memory. The aim of this study was to evaluate the effects of amitriptyline and fluoxetine on synaptic plasticity and TNF-α level in the hippocampus of streptozotocin-induced diabetic rats. Methods: Experimenta...

متن کامل

The effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices

The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...

متن کامل

Aspirin changes short term synaptic plasticity in CA1 area of the rat hippocampus

Introduction: The prostaglandin E2 (PGE2), a cyclooxygenase (COX) product, play critical roles in the synaptic plasticity. Therefore, long term use of COX inhibitors may impair the synaptic plasticity. Considering the wide clinical administration of aspirin and its unknown effects on information processing in the brain, the effect of aspirin and sodium salicylate on the short term synaptic p...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 34  شماره 

صفحات  -

تاریخ انتشار 2008